Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.402
Filtrar
1.
Mol Biol Cell ; 35(5): ar64, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507235

RESUMO

Natural killer (NK) cells patrol tissue to mediate lysis of virally infected and tumorigenic cells. Human NK cells are typically identified by their expression of neural cell adhesion molecule (NCAM, CD56), yet despite its ubiquitous expression on NK cells, CD56 remains a poorly understood protein on immune cells. CD56 has been previously demonstrated to play roles in NK cell cytotoxic function and cell migration. Specifically, CD56-deficient NK cells have impaired cell migration on stromal cells and CD56 is localized to the uropod of NK cells migrating on stroma. Here, we show that CD56 is required for NK cell migration on ICAM-1 and is required for the establishment of persistent cell polarity and unidirectional actin flow. The intracellular domain of CD56 (NCAM-140) is required for its function and the loss of CD56 leads to enlarged actin foci and sequestration of phosphorylated Pyk2 accompanied by increased size and frequency of activated LFA-1 clusters. Together, these data identify a role for CD56 in regulating human NK cell migration through modulation of actin dynamics and integrin turnover.


Assuntos
Actinas , Moléculas de Adesão de Célula Nervosa , Humanos , Moléculas de Adesão de Célula Nervosa/metabolismo , Actinas/metabolismo , Antígeno CD56/metabolismo , Células Matadoras Naturais , Antígeno-1 Associado à Função Linfocitária/metabolismo , Movimento Celular
2.
Cells ; 13(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38391953

RESUMO

Interactions among leukocytes and leukocytes with immune-associated auxiliary cells represent an essential feature of the immune response that requires the involvement of cell adhesion molecules (CAMs). In the immune system, CAMs include a wide range of members pertaining to different structural and functional families involved in cell development, activation, differentiation and migration. Among them, ß2 integrins (LFA-1, Mac-1, p150,95 and αDß2) are predominantly involved in homotypic and heterotypic leukocyte adhesion. ß2 integrins bind to intercellular (I)CAMs, actin cytoskeleton-linked receptors belonging to immunoglobulin superfamily (IgSF)-CAMs expressed by leukocytes and vascular endothelial cells, enabling leukocyte activation and transendothelial migration. ß2 integrins have long been viewed as the most important ICAMs partners, propagating intracellular signalling from ß2 integrin-ICAM adhesion receptor interaction. In this review, we present previous evidence from pioneering studies and more recent findings supporting an important role for ICAMs in signal transduction. We also discuss the contribution of immune ICAMs (ICAM-1, -2, and -3) to reciprocal cell signalling and function in processes in which ß2 integrins supposedly take the lead, paying particular attention to T cell activation, differentiation and migration.


Assuntos
Moléculas de Adesão Celular , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Moléculas de Adesão Celular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1 , Antígenos CD18 , Comunicação
3.
J Immunother Cancer ; 12(2)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38417916

RESUMO

BACKGROUND: The antitumor activity of natural killer (NK) cells can be enhanced by specific targeting with therapeutic antibodies that trigger antibody-dependent cell-mediated cytotoxicity (ADCC) or by genetic engineering to express chimeric antigen receptors (CARs). Despite antibody or CAR targeting, some tumors remain resistant towards NK cell attack. While the importance of ICAM-1/LFA-1 interaction for natural cytotoxicity of NK cells is known, its impact on ADCC induced by the ErbB2 (HER2)-specific antibody trastuzumab and ErbB2-CAR-mediated NK cell cytotoxicity against breast cancer cells has not been investigated. METHODS: Here we used NK-92 cells expressing high-affinity Fc receptor FcγRIIIa in combination with trastuzumab or ErbB2-CAR engineered NK-92 cells (NK-92/5.28.z) as well as primary human NK cells combined with trastuzumab or modified with the ErbB2-CAR and tested cytotoxicity against cancer cells varying in ICAM-1 expression or alternatively blocked LFA-1 on NK cells. Furthermore, we specifically stimulated Fc receptor, CAR and/or LFA-1 to study their crosstalk at the immunological synapse and their contribution to degranulation and intracellular signaling in antibody-targeted or CAR-targeted NK cells. RESULTS: Blockade of LFA-1 or absence of ICAM-1 significantly reduced cell killing and cytokine release during trastuzumab-mediated ADCC against ErbB2-positive breast cancer cells, but not so in CAR-targeted NK cells. Pretreatment with 5-aza-2'-deoxycytidine induced ICAM-1 upregulation and reversed NK cell resistance in ADCC. Trastuzumab alone did not sufficiently activate NK cells and required additional LFA-1 co-stimulation, while activation of the ErbB2-CAR in CAR-NK cells induced efficient degranulation independent of LFA-1. Total internal reflection fluorescence single molecule imaging revealed that CAR-NK cells formed an irregular immunological synapse with tumor cells that excluded ICAM-1, while trastuzumab formed typical peripheral supramolecular activation cluster (pSMAC) structures. Mechanistically, the absence of ICAM-1 did not affect cell-cell adhesion during ADCC, but rather resulted in decreased signaling via Pyk2 and ERK1/2, which was intrinsically provided by CAR-mediated targeting. Furthermore, while stimulation of the inhibitory NK cell checkpoint molecule NKG2A markedly reduced FcγRIIIa/LFA-1-mediated degranulation, retargeting by CAR was only marginally affected. CONCLUSIONS: Downregulation of ICAM-1 on breast cancer cells is a critical escape mechanism from trastuzumab-triggered ADCC. In contrast, CAR-NK cells are able to overcome cancer cell resistance caused by ICAM-1 reduction, highlighting the potential of CAR-NK cells in cancer immunotherapy.


Assuntos
Neoplasias da Mama , Receptores de Antígenos Quiméricos , Humanos , Feminino , Molécula 1 de Adesão Intercelular , Receptores de Antígenos Quiméricos/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Regulação para Baixo , Evasão Tumoral , Linhagem Celular Tumoral , Células Matadoras Naturais , Trastuzumab/farmacologia , Anticorpos , Receptores Fc/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38205640

RESUMO

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Assuntos
Lesão Pulmonar Aguda , Antígeno de Macrófago 1 , Animais , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Adesão Celular , Dissulfetos , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Compostos de Sulfidrila/metabolismo
5.
Oncoimmunology ; 13(1): 2293511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38125721

RESUMO

Anti-PD-1 antibody therapy has achieved success in tumor treatment; however, the duration of its clinical benefits are typically short. The functional state of intratumoral CD8+ T cells substantially affects the efficacy of anti-PD-1 antibody therapy. Understanding how intratumoral CD8+ T cells change will contribute to the improvement in anti-PD-1 antibody therapy. In this study, we found that tumor growth was not arrested after the late administration of anti-PD-1 antibody and that the antitumor function of CD8+ T cells decreased with tumor progression. The results of the RNA sequencing of CD8+ T cells infiltrating the tumor site on days 7 and 14 showed that the cell adhesion molecule Lymphocyte Function-associated Antigen-1 (LFA-1) participates in regulating the antitumor function of CD8+ T cells and that decreased LFA-1 expression in intratumoral CD8+ T cells is associated with tumor progression. By analyzing the Gene Expression Omnibus (GEO) database and our results, we found that the antitumor function of intratumoral CD8+ T cells with high LFA-1 expression was stronger. The formation of immune synapses is impaired in Itgal-si CD8+ T cells, resulting in decreased anti-tumor function. LFA-1 expression in intratumoral CD8+ T cells is regulated by the IL-2/STAT5 pathway. The combination of IL-2 and anti-PD-1 antibody effectively enhanced LFA-1 expression and the antitumor function of intratumoral CD8+ T cells. The adoptive transfer of OT-1 T cells overexpressing LFA-1, STAT5A, or STAT5B resulted in higher antitumor function, deferred tumor growth, and prolonged survival. These findings indicate that LFA-1-mediated immune synapse acts as a regulator of the antitumor function of intratumoral CD8+ T cells, which can be applied to improve anti-PD-1 antibody therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Antígeno-1 Associado à Função Linfocitária/metabolismo , Interleucina-2/farmacologia , Fator de Transcrição STAT5/metabolismo , Moléculas de Adesão Celular
6.
Biochim Biophys Acta Gen Subj ; 1868(3): 130541, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103755

RESUMO

BACKGROUND: Extracellular vesicles (EVs) are natural nano-carriers that possess the required crucial features of an ideal biomolecular delivery system. However, using unmodified EVs may have some limitations such as low accumulation in target sites. Studies have established that engineering EVs against different cell surface markers can overcome most of these hurdles. METHODS: In this study, engineered EVs expressing ICAM-1/LAMP2b fusion protein on their surfaces were produced and isolated. The uptake of isolated targeted and non-targeted EVs was evaluated by imaging and flow cytometry. To assess the ability of targeted EVs to be applied as a safe carrier, pAAVS1-Puro-GFP plasmids were encapsulated into EVs by electroporation. RESULTS: The HEKT 293 cell line was successfully modified permanently by a lentiviral vector to express ICAM-1 on the surface of the derived EVs. The ELISA and western blot tests established the binding affinity of targeted EVs for recombinant LFA-1 with a remarkable difference from non-targeted EVs. Furthermore, flow cytometry results revealed noteworthy differences in the binding of LFA-1-positive, non-targeted EVs, and targeted EVs to LFA-1-negative cells. Finally, imaging and flow cytometry indicated that newly produced EVs could efficiently interact with T cells and functionally deliver loaded plasmids to them. CONCLUSION: These LFA-1-targeted EVs were able to interact with T cells as their recipient cells. They can be utilized as an ideal delivery system to transfer various biomolecules to T cells, facilitating immunotherapies or other cell-based treatments.


Assuntos
Vesículas Extracelulares , Linfócitos T , Linfócitos T/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Vesículas Extracelulares/metabolismo , Linhagem Celular
7.
Cells ; 12(23)2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067132

RESUMO

B cell antigen receptor (BCR) signaling induces actin cytoskeleton remodeling by stimulating actin severing, actin polymerization, and the nucleation of branched actin networks via the Arp2/3 complex. This enables B cells to spread on antigen-bearing surfaces in order to increase antigen encounters and to form an immune synapse (IS) when interacting with antigen-presenting cells (APCs). Although the WASp, N-WASp, and WAVE nucleation-promoting factors activate the Arp2/3 complex, the role of WAVE2 in B cells has not been directly assessed. We now show that both WAVE2 and the Arp2/3 complex localize to the peripheral ring of branched F-actin when B cells spread on immobilized anti-Ig antibodies. The siRNA-mediated depletion of WAVE2 reduced and delayed B cell spreading on immobilized anti-Ig, and this was associated with a thinner peripheral F-actin ring and reduced actin retrograde flow compared to control cells. Depleting WAVE2 also impaired integrin-mediated B cell spreading on fibronectin and the LFA-1-induced formation of actomyosin arcs. Actin retrograde flow amplifies BCR signaling at the IS, and we found that depleting WAVE2 reduced microcluster-based BCR signaling and signal amplification at the IS, as well as B cell activation in response to antigen-bearing cells. Hence, WAVE2 contributes to multiple actin-dependent processes in B lymphocytes.


Assuntos
Actinas , Receptores de Antígenos de Linfócitos B , Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/fisiologia , Animais , Camundongos
8.
Autoimmun Rev ; 22(10): 103414, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37619906

RESUMO

Type 1 diabetes (T1D) develops due to autoimmune targeting of the pancreatic islet ß-cells. Clinical symptoms arise from reduced insulin in circulation. The molecular events and interactions between discrete immune cell populations, infiltration of such leukocytes into pancreatic and islet tissue, and selective targeting of the islet ß-cells during autoimmunity and graft rejection are not entirely understood. One protein central to antigen presentation, priming of immune cells, trafficking of leukocytes, and vital for leukocyte effector function is the intercellular adhesion molecule-1 (ICAM-1). The gene encoding ICAM-1 is transcriptionally regulated and rapidly responsive (i.e., within hours) to pro-inflammatory cytokines. ICAM-1 is a transmembrane protein that can be glycosylated; its presence on the cell surface provides co-stimulatory functions for immune cell activation and stabilization of cell-cell contacts. ICAM-1 interacts with the ß2-integrins, CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1), which are present on discrete immune cell populations. A whole-body ICAM-1 deletion protects NOD mice from diabetes onset, strongly implicating this protein in autoimmune responses. Since several different cell types express ICAM-1, its biology is fundamentally essential for various physiological and pathological outcomes. Herein, we review the role of ICAM-1 during both autoimmunity and islet graft rejection to understand the mechanism(s) leading to islet ß-cell death and dysfunction that results in insufficient circulating quantities of insulin to control glucose homeostasis.


Assuntos
Autoimunidade , Rejeição de Enxerto , Molécula 1 de Adesão Intercelular , Ilhotas Pancreáticas , Animais , Humanos , Camundongos , Insulinas , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Ilhotas Pancreáticas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/metabolismo , Camundongos Endogâmicos NOD
9.
J Chem Inf Model ; 63(12): 3878-3891, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37310029

RESUMO

Integrins are a family of α/ß heterodimeric cell surface adhesion receptors which are capable of transmitting signals bidirectionally across membranes. They are known for their therapeutic potential in a wide range of diseases. However, the development of integrin-targeting medications has been impacted by unexpected downstream effects including unwanted agonist-like effects. Allosteric modulation of integrins is a promising approach to potentially overcome these limitations. Applying mixed-solvent molecular dynamics (MD) simulations to integrins, the current study uncovers hitherto unknown allosteric sites within the integrin α I domains of LFA-1 (αLß2; CD11a/CD18), VLA-1 (α1ß1; CD49a/CD29), and Mac-1 (αMß2, CD11b/CD18). We show that these pockets are putatively accessible to small-molecule modulators. The findings reported here may provide opportunities for the design of novel allosteric integrin inhibitors lacking the unwanted agonism observed with earlier as well as current integrin-targeting drugs.


Assuntos
Antígenos CD18 , Simulação de Dinâmica Molecular , Antígenos CD18/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/metabolismo , Receptores de Superfície Celular
10.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047302

RESUMO

Regulatory T cells (Treg) are essential for the maintenance of peripheral tolerance. Treg dysfunction results in diverse inflammatory and autoimmune diseases with life-threatening consequences. ß2-integrins (CD11a-d/CD18) play important roles in the migration of leukocytes into inflamed tissues and cell signaling. Of all ß2-integrins, T cells, including Treg, only express CD11a/CD18, termed lymphocyte function-associated antigen 1 (LFA-1), on their surface. In humans, loss-of-function mutations in the common subunit CD18 result in leukocyte adhesion deficiency type-1 (LAD-1). Clinical symptoms vary depending on the extent of residual ß2-integrin function, and patients may experience leukocytosis and recurrent infections. Some patients can develop autoimmune diseases, but the immune processes underlying the paradoxical situation of immune deficiency and autoimmunity have been scarcely investigated. To understand this complex phenotype, different transgenic mouse strains with a constitutive knockout of ß2-integrins have been established. However, since a constitutive knockout affects all leukocytes and may limit the validity of studies focusing on their cell type-specific role, we established a Treg-specific CD18-floxed mouse strain. This mini-review aims to delineate the role of LFA-1 for the induction, maintenance, and regulatory function of Treg in vitro and in vivo as deduced from observations using the various ß2-integrin-deficient mouse models.


Assuntos
Doenças Autoimunes , Antígeno-1 Associado à Função Linfocitária , Humanos , Camundongos , Animais , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Linfócitos T Reguladores/metabolismo , Camundongos Transgênicos , Antígenos CD18/genética , Antígenos CD18/metabolismo , Diferenciação Celular/genética
11.
Biochem Pharmacol ; 211: 115504, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921634

RESUMO

Integrins are a family of cell surface receptors well-recognized for their therapeutic potential in a wide range of diseases. However, the development of integrin targeting medications has been impacted by unexpected downstream effects, reflecting originally unforeseen interference with the bidirectional signalling and cross-communication of integrins. We here selected one of the most severely affected target integrins, the integrin lymphocyte function-associated antigen-1 (LFA-1, αLß2, CD11a/CD18), as a prototypic integrin to systematically assess and overcome these known shortcomings. We employed a two-tiered ligand-based virtual screening approach to identify a novel class of allosteric small molecule inhibitors targeting this integrin's αI domain. The newly discovered chemical scaffold was derivatized, yielding potent bis-and tris-aryl-bicyclic-succinimides which inhibit LFA-1 in vitro at low nanomolar concentrations. The characterisation of these compounds in comparison to earlier LFA-1 targeting modalities established that the allosteric LFA-1 inhibitors (i) are devoid of partial agonism, (ii) selectively bind LFA-1 versus other integrins, (iii) do not trigger internalization of LFA-1 itself or other integrins and (iv) display oral availability. This profile differentiates the new generation of allosteric LFA-1 inhibitors from previous ligand mimetic-based LFA-1 inhibitors and anti-LFA-1 antibodies, and is projected to support novel immune regulatory regimens selectively targeting the integrin LFA-1. The rigorous computational and experimental assessment schedule described here is designed to be adaptable to the preclinical discovery and development of novel allosterically acting compounds targeting integrins other than LFA-1, providing an exemplary approach for the early characterisation of next generation integrin inhibitors.


Assuntos
Antígeno-1 Associado à Função Linfocitária , Transdução de Sinais , Antígeno-1 Associado à Função Linfocitária/química , Antígeno-1 Associado à Função Linfocitária/metabolismo , Ligantes , Molécula 1 de Adesão Intercelular/metabolismo
12.
Dokl Biochem Biophys ; 508(1): 12-16, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36653582

RESUMO

To carry out antitumor activity against cells that have lost surface antigens, human lymphocytes must have a certain repertoire of surface proteins capable of contacting a tumor cell and inducing programmed cell death in it. In this work, we showed that activation of healthy donor cells by IL-2 cytokine within 6 days causes the appearance of FasL, CD25, and LFA-1 proteins on CD8+CD25+ T lymphocytes, and also converts the LFA-1 protein into an active form having a high affinity for its target, ICAM-1 integrin. The appearance of these proteins on the surface of this subpopulation of lymphocytes allows them to induce programmed cell death in HLA-negative tumor cells.


Assuntos
Interleucina-2 , Antígeno-1 Associado à Função Linfocitária , Humanos , Apoptose , Linfócitos T CD8-Positivos , Citocinas , Interleucina-2/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Linfócitos T/imunologia
13.
Cancer Immunol Immunother ; 72(6): 1865-1880, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36688994

RESUMO

Radiotherapy (RT) not only damages tumors but also induces interferon (IFN) expression in tumors. IFNs mediate PD-L1 to exhaust CD8+ T cells, but which also directly impact tumor cells and potentially activate anti-tumor immune surveillance. Little is known about the contradictory mechanism of IFNs in regulating CD8+ T-mediated anti-tumor activity in lung cancer. This study found that RT induced IFNs and CXCL9/10 expression in the RT-treated lung cancer cells. Specifically, RT- and IFNγ-pretreated A549 significantly activated CD8+ T cells, resulting in significant inhibition of A549 colony formation. RNAseq and consequent qPCR results revealed that IFNγ induced PD-L1, CXCL10, and ICAM-1, whereas PD-L1 knockdown activated CD8+ T cells, but ICAM-1 knockdown diminished CD8+ T cell activation. We further demonstrated that CXCR3 and CXCL10 decreased in the CD8+ T cells and nonCD8+ PBMCs, respectively, in the patients with lung cancer that expressed lower reactivation as co-cultured with A549 cells. In addition, inhibitors targeting CXCR3 and LFA-1 in CD8+ T cells significantly diminished CD8+ T cell activation and splenocytes-mediated anti-LL/2shPdl1. In conclusion, we validated that RT suppressed lung cancer and overexpress PD-L1, CXCL10, and ICAM-1, which exhibited different roles in regulating CD8+ T cell activity. We propose that CXCR3highCD8+ T cells stimulated by CXCL10 exhibit anti-tumor immunity, possibly by enhancing T cells-tumor cells adhesion through CXCL10/CXCR3-activated LFA-1-ICAM-1 interaction, but CXCR3lowCD8+ T cells with low CXCL10 in patients with lung cancer were exhausted by PD-L1 dominantly. Therefore, RT potentially activates CD8+ T cells by inducing IFNs-mediated CXCL10 and ICAM-1 expression in tumors to enhance CD8+ T-tumor adhesion and recognition. This study clarified the possible mechanisms of RT and IFNs in regulating CD8+ T cell activation in lung cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Humanos , Quimiocina CXCL10/metabolismo , Antígeno B7-H1/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Interferon gama/metabolismo , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
14.
J Cell Physiol ; 238(1): 227-241, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477412

RESUMO

The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.


Assuntos
Proteínas de Ancoragem à Quinase A , Sinapses Imunológicas , Células Matadoras Naturais , Antígeno-1 Associado à Função Linfocitária , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Centrossomo/metabolismo , Citotoxicidade Imunológica , Antígeno-1 Associado à Função Linfocitária/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Células Matadoras Naturais/metabolismo
15.
PLoS Negl Trop Dis ; 16(10): e0010848, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36206304

RESUMO

Ocular toxoplasmosis (OT) is one of the most common causes of posterior uveitis. However, the pathogenic mechanisms of OT have not been well elucidated. Here, we used C57BL/6 (B6) mice to establish OT by peroral infection with 20 cysts of the TgCtWh6 strain, and severe ocular damage was observed by histopathological analysis in the eyes of infected mice. RNA-sequencing results showed that infection with T. gondii increased the expression of the NK-mediated cytotoxicity gene pathway at Day 30 after ocular T. gondii infection. Both NK-cell and CD49a+ NK-cell subsets are increased in ocular tissues, and the expression levels of LFA-1 in NK cells and ICAM-1 in the OT murine model were upregulated upon infection. Furthermore, inhibition of the interaction between LFA-1 and ICAM-1 with lifitegrast, a novel small molecule integrin antagonist, inhibited the protein expression of LFA-1 and ICAM-1 in murine OT and NK cells, improved the pathology of murine OT and influenced the secretion of cytokines in the OT murine model. In conclusion, the interaction between LFA-1 and ICAM-1 plays a role in the early regulation of the CD49a+ NK-cell proportion in an OT murine model. LFA-1/ ICAM-1 may be a key molecule in the pathogenesis of OT, and may provide new insights for potential immunotherapy.


Assuntos
Antígeno-1 Associado à Função Linfocitária , Toxoplasmose Ocular , Camundongos , Animais , Antígeno-1 Associado à Função Linfocitária/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Modelos Animais de Doenças , Integrina alfa1/metabolismo , Camundongos Endogâmicos C57BL , Células Matadoras Naturais/metabolismo , Citocinas/metabolismo , RNA
16.
Cell Rep ; 40(9): 111260, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044861

RESUMO

Hematopoiesis was considered a hierarchical stepwise process but was revised to a continuous process following single-cell RNA sequencing. However, the uncertainty or fluctuation of single-cell transcriptome dynamics during differentiation was not considered, and the dendritic cell (DC) pathway in the lymphoid context remains unclear. Here, we identify human B-plasmacytoid DC (pDC) bifurcation as large fluctuating transcriptome dynamics in the putative B/NK progenitor region by dry and wet methods. By converting splicing kinetics into diffusion dynamics in a deep generative model, our original computational methodology reveals strong fluctuation at B/pDC bifurcation in IL-7Rα+ regions, and LFA-1 fluctuates positively in the pDC direction at the bifurcation. These expectancies are validated by the presence of B/pDC progenitors in the IL-7Rα+ fraction and preferential expression of LFA-1 in pDC-biased progenitors with a niche-like culture system. We provide a model of fluctuation-based differentiation, which reconciles continuous and discrete models and is applicable to other developmental systems.


Assuntos
Diferenciação Celular , Células Dendríticas , Antígeno-1 Associado à Função Linfocitária , Diferenciação Celular/genética , Células Dendríticas/metabolismo , Hematopoese , Humanos , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Transcriptoma/genética
17.
Sci Signal ; 15(743): eabl9169, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35857633

RESUMO

The integrin lymphocyte function-associated antigen 1 (LFA-1) helps to coordinate the migration, adhesion, and activation of T cells through interactions with intercellular adhesion molecule 1 (ICAM-1) and ICAM-2. LFA-1 is activated during the engagement of chemokine receptors and the T cell receptor (TCR) through inside-out signaling, a process that is partially mediated by phosphoinositide 3-kinase (PI3K) and its product phosphatidylinositol 3,4,5-trisphosphate (PIP3). To evaluate potential roles of PI3K in LFA-1 activation, we designed a library of CRISPR/single guide RNAs targeting known and potential PIP3-binding proteins and screened for effects on the ability of primary mouse T cells to bind to ICAM-1. We identified multiple proteins that regulated the binding of LFA-1 to ICAM-1, including the Rap1 and Ras GTPase-activating protein RASA3. We found that RASA3 suppressed LFA-1 activation in T cells, that its expression was rapidly reduced upon T cell activation, and that its activity was inhibited by PI3K. Loss of RASA3 in T cells led to increased Rap1 activation, defective lymph node entry and egress, and impaired responses to T-dependent immunization in mice. Our results reveal a critical role for RASA3 in T cell migration, homeostasis, and function.


Assuntos
Antígeno-1 Associado à Função Linfocitária , Fosfatidilinositol 3-Quinases , Animais , Antígenos CD , Adesão Celular/genética , Moléculas de Adesão Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas Ativadoras de GTPase , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Linfócitos T/metabolismo
18.
Nat Commun ; 13(1): 3222, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680882

RESUMO

Cytotoxic lymphocytes fight pathogens and cancer by forming immune synapses with infected or transformed target cells and then secreting cytotoxic perforin and granzyme into the synaptic space, with potent and specific killing achieved by this focused delivery. The mechanisms that establish the precise location of secretory events, however, remain poorly understood. Here we use single cell biophysical measurements, micropatterning, and functional assays to demonstrate that localized mechanotransduction helps define the position of secretory events within the synapse. Ligand-bound integrins, predominantly the αLß2 isoform LFA-1, function as spatial cues to attract lytic granules containing perforin and granzyme and induce their fusion with the plasma membrane for content release. LFA-1 is subjected to pulling forces within secretory domains, and disruption of these forces via depletion of the adaptor molecule talin abrogates cytotoxicity. We thus conclude that lymphocytes employ an integrin-dependent mechanical checkpoint to enhance their cytotoxic power and fidelity.


Assuntos
Antígeno-1 Associado à Função Linfocitária , Mecanotransdução Celular , Citotoxicidade Imunológica , Granzimas/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Perforina/metabolismo , Sinapses/metabolismo , Linfócitos T Citotóxicos
19.
J Clin Invest ; 132(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35552271

RESUMO

The inability of CD8+ effector T cells (Teffs) to reach tumor cells is an important aspect of tumor resistance to cancer immunotherapy. The recruitment of these cells to the tumor microenvironment (TME) is regulated by integrins, a family of adhesion molecules that are expressed on T cells. Here, we show that 7HP349, a small-molecule activator of lymphocyte function-associated antigen-1 (LFA-1) and very late activation antigen-4 (VLA-4) integrin cell-adhesion receptors, facilitated the preferential localization of tumor-specific T cells to the tumor and improved antitumor response. 7HP349 monotherapy had modest effects on anti-programmed death 1-resistant (anti-PD-1-resistant) tumors, whereas combinatorial treatment with anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) increased CD8+ Teff intratumoral sequestration and synergized in cooperation with neutrophils in inducing cancer regression. 7HP349 intratumoral CD8+ Teff enrichment activity depended on CXCL12. We analyzed gene expression profiles using RNA from baseline and on treatment tumor samples of 14 melanoma patients. We identified baseline CXCL12 gene expression as possibly improving the likelihood or response to anti-CTLA-4 therapies. Our results provide a proof-of-principle demonstration that LFA-1 activation could convert a T cell-exclusionary TME to a T cell-enriched TME through mechanisms involving cooperation with innate immune cells.


Assuntos
Antígeno-1 Associado à Função Linfocitária , Melanoma , Linfócitos T CD8-Positivos , Antígeno CTLA-4 , Humanos , Imunoterapia/métodos , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Linfócitos do Interstício Tumoral , Melanoma/tratamento farmacológico , Melanoma/genética , Receptor de Morte Celular Programada 1 , Linfócitos T/metabolismo , Microambiente Tumoral
20.
Elife ; 112022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404237

RESUMO

B-cell activation and immune synapse (IS) formation with membrane-bound antigens are actin-dependent processes that scale positively with the strength of antigen-induced signals. Importantly, ligating the B-cell integrin, LFA-1, with ICAM-1 promotes IS formation when antigen is limiting. Whether the actin cytoskeleton plays a specific role in integrin-dependent IS formation is unknown. Here, we show using super-resolution imaging of mouse primary B cells that LFA-1:ICAM-1 interactions promote the formation of an actomyosin network that dominates the B-cell IS. This network is created by the formin mDia1, organized into concentric, contractile arcs by myosin 2A, and flows inward at the same rate as B-cell receptor (BCR):antigen clusters. Consistently, individual BCR microclusters are swept inward by individual actomyosin arcs. Under conditions where integrin is required for synapse formation, inhibiting myosin impairs synapse formation, as evidenced by reduced antigen centralization, diminished BCR signaling, and defective signaling protein distribution at the synapse. Together, these results argue that a contractile actomyosin arc network plays a key role in the mechanism by which LFA-1 co-stimulation promotes B-cell activation and IS formation.


The immune system has the ability to recognize a vast array of infections and trigger rapid responses. This defense mechanism is mediated in part by B cells which make antibodies that can neutralize or destroy specific disease-causing agents. When pathogens (such as bacteria or viruses) invade the body, a specialized immune cell called an 'antigen presenting cell' holds it in place and presents it to the B cell to examine. Receptors on the surface of the B cell then bind to the infectious agent and launch the B cell into action, triggering the antibody response needed to remove the pathogen. This process relies on B cells and antigen presenting cells making a close connection called an immune synapse, which has a bulls-eye pattern with the receptor in the middle surrounded by sticky proteins called adhesion molecules. A network of actin filaments coating the inside of the B cell are responsible for arranging the proteins into this bulls-eye shape. Once fully formed, the synapse initiates the production of antibodies and helps B cells to make stronger versions of these defensive proteins. So far, most studies have focused on the role the receptor plays in B cell activation. However, when there are only small amounts of the pathogen available, these receptors bind to the antigen presenting cell very weakly. When this happens, adhesion molecules have been shown to step in and promote the formation of the mature synapse needed for B cell activation. But it is not fully understood how adhesion molecules do this. To investigate, Wang et al. looked at mouse B cells using super resolution microscopes. This revealed that when B cells receive signals through both their receptors and their adhesion molecules, they rearrange their actin into a circular structure composed of arc shapes. Motors on the actin arcs then contract the structure inwards, pushing the B cell receptors into the classic bullseye pattern. This only happened when adhesion molecules were present and signals through the B cell receptors were weak. These findings suggest that adhesion molecules help form immune synapses and activate B cells by modifying the actin network so it can drive the re-patterning of receptor proteins. B cells are responsible for the long-term immunity provided by vaccines. Thus, it is possible that the findings of Wang et al. could be harnessed to create vaccines that trigger a stronger antibody response.


Assuntos
Actomiosina , Linfócitos B , Sinapses Imunológicas , Antígeno-1 Associado à Função Linfocitária , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Linfócitos B/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Camundongos , Miosinas/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...